
 Bio446/650 check off list for Feb 18, 2016 

Part 1 of 2: 
 
Crayfish abdomen (L1,L2 maybe M muscles for resting membrane potentials. 

 
Schematic drawing from a ventral view of the dorsal part of the crayfish abdomen showing 
the extensor musculature of each segment. The dorsal membrane abdomen muscle 
(DMA) and the superficial extensor accessory muscle head (SEAcc) occur in segments 1 
through 5 of the abdomen with a different orientation for each segment. With the exception 
of segment 1, these muscles have their attachment sites at their anterior end to the 
calcified tergite and at the posterior end in the articular membrane. In segment 1, the 
homologous muscles have their anterior attachment sites to the articular membrane 
located between the thorax and abdomen. The illustration was based upon photographic 
montages of methylene blue stained preparations. On the left side of the figure all the 
deep extensor muscles have been removed to show the dorsal superficial extensor 
muscles. Scale = 2.35 mm. (Taken from Sohn et al. 2000).  
 
If you are bored here is a movie 
http://www.jove.com/video/2322/membrane-potentials-synaptic-responses-neuronal-
circuitry 
 
 
 
Normal saline (5.4 mM K)  RP______, RP____ RP______  AVG _____ 

http://www.jove.com/video/2322/membrane-potentials-synaptic-responses-neuronal-circuitry
http://www.jove.com/video/2322/membrane-potentials-synaptic-responses-neuronal-circuitry


 
20 mM K  RP______, RP____ RP______  AVG _____ 
 
40 mM K  RP______, RP____ RP______  AVG _____ 
 
60 mM K  RP______, RP____ RP______  AVG _____ 
 
Think about how to graph  RP vs. K+ and  log , semi log etc… and why 
 
Hint:  
The Nernst equation is generally considered for ions across a membrane generating an 
electromotive force as commonly shown as:  

𝑉 =
𝑅𝑇

𝑧𝐹
 ∙ 𝑙𝑛

 [𝑋]𝑜𝑢𝑡

[𝑋]𝑖𝑛
 

 
X = ion of interest 
V = equilibrium voltage for the X ion across the membrane 
R = gas constant [8.314 J/(mol•K)] 
T = absolute temperature [Kelvin] 
Z = valence of the ion 
F = Faraday's constant [9.649 × 10^4 C/mol] 
 
For the K+ ion at 20oC and transformation of ln to log10 along with filling in the constants, 
one arrives at: 

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 = 58 𝑙𝑜𝑔
[𝐾]𝑜𝑢𝑡

[𝐾]𝑖𝑛
 

 
Let us assume that only K+ is permeant by diffusion. [Kin] is the K+ concentration on the 
inside of the cell and [Kout] is the K+ concentration on the outside of the cell. 
 
As an exercise estimate  [Kin].  ______________ 
 
Assume for this calculation, membrane potential is only dependent on the K+ equilibrium 
potential. 
 
Given the  [Kout]= for the saline used is 5.4 mM. Also, assume membrane potential is -
70mV.   
 

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 = 58 log
5.4

[𝐾]𝑖𝑛
 

 
 
In the experiment we will measure a cell’s resting membrane potential and determine how 
it is influenced by altering  [Kout]. The slope of the hypothetical line relating membrane 
potential and  [Kout] is 58. After collecting data on the resting membrane potential at 
various [Kout] (range from 5.4 mM to 100 mM) we will plot the observed values to 



determine if there is a match with the hypothetical line. We will use the average resting 
membrane potential obtained at 5.4 mM [Kout] for initiating the hypothetical and observed 
lines for comparison. 
 
Considering that a membrane can be permeable to more than one ion at rest, as well as 
at various depolarized states, one uses the G-H-K equation to take into account the 
permeability (P in the equation) for various ions. The G-H-K equation will reduce to the 
Nernst equation if a membrane is permeable to only one ion.  
 
 Here is a generalized G-H-K equation for Na+, K+, and Cl- ions: 
 

Em𝐾,𝑁𝑎,𝐶𝑙 =
RT

𝐹
ln

PNa+[Na+]out + PK+[K+]out

PNa+[Na+]in + PK+[K+]in
 

 
Since Cl- has a negative charge, the concentration term is inverted in this equation for the 
inside and outside. This allows the Z (ion charge) to be left off. 
 
 
Aims of this exercise 
 
In this experiment we will measure the membrane potential of a crayfish muscle cell and 
apply the principles discussed above to address: 
 
1. How to measure a cell membrane potential with appropriate instrumentation and 
technique. 
 
2. Ion permeability of the muscle cell membrane and how it contributes to the membrane 
potential. 
 
 
Plot the measures obtained for the resting membrane potentials at each [K+]out used using 
Excel. See if the observed and hypothetical lines are matched in their slope.  To plot the 
values use a semi-log plot with the x-axis of varied  [K+]out  as a log and the y-axis of the  
membrane potentials (as shown below). (Download free graph paper if needed  
http://incompetech.com/graphpaper/logarithmic/) 

http://incompetech.com/graphpaper/logarithmic/


  



As early as 1902, Bernstein was dealing with the issues of a resting potential in the axon 
of a squid. It is intriguing to consider how these early ideas and observations of Berstein 
(1902) and Nernst (1888) later influenced research in membrane physiology. (See review 
by Malmivuo and Plonsey, 1995; also available on the www  http://www.bem.fi/book/ ). 
There are still, to this day, breakthroughs being made about ion channel function and 
properties of biological membranes that are very significant in understanding the cellular 
physiology which relates to the function of tissues, organs and systems. 
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Part 2 of 2:  
The abdominal extensor muscle preparation used to demonstrate the resting membrane 
potential is also ideal for demonstrating induction of synaptic responses at the NMJs from 
the various muscles.  Some muscles in crustaceans are selectively innervated by either 
a phasic or a tonic motor neuron, although some single fibers can be innervated by both 
phasic and tonic excitatory motor neurons, such as for extensor muscle in the crayfish 
walking legs (Atwood, 2008) and most other limb muscles (Wiersma, 1961a). By 
selectively stimulating phasic and tonic motor neurons, physiological differences in the 
EPSPs may be measured. Phasic motor neurons produce rapid twitching of muscle fibers 
and evoke EPSPs on the order of 10–40 mV. The phasic response can depress rapidly 
with 5–10-Hz trains of stimulation. The tonic motor neurons give rise to smaller EPSPs 
that can be facilitated in the presence of a higher frequency (10–50 Hz) of stimulation. 
Structurally, the presynaptic phasic and tonic terminals at the NMJs are different (Atwood 
and Cooper, 1996; Bradacs et al., 1997; Cooper et al., 1998). 
 
An additional NMJ preparation presented is used for monitoring intrinsic motor activity 
and sensory stimulus induced motor activity from the CNS. This is the superficial flexor 
muscle on the ventral side of the crayfish abdomen. This preparation will also be used to 
monitor the sensory-CNS-motor-muscle circuit and the effects of neuromodulators 
(Strawn et al., 2000). 
 
In each of the abdominal segment (except the last) there are three functional groups of 
muscles: (1) those controlling pleopod (swimmerets) movement, (2) three extensor 
muscles and (3) three flexor muscles. The flexors and extensors are antagonistic groups 
of muscles which bring about either abdominal flexion or extension by causing rotation 
about the intersegmental hinges. The phasic musculature occupies most of the volume 
of the abdomen, while the tonic muscles comprise thin sheets of fibers that span the 
dorsal (extensors) and ventral (flexors) aspect of each abdominal segment. 
 
In crayfish, the tonic abdominal flexor muscles of crayfish are innervated in each half 
segment by five motoneurons and by a peripheral inhibitory neuron. The excitatory 
motoneurons use glutamate as a neurotransmitter. Glutamate depolarizes the muscle 
fibers by causing an increase in permeability primarily to sodium ions. The inhibitory 
neurons release gamma-amino butyric acid (GABA), which usually hyperpolarizes the 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Skou%20JC%22%5BAuthor%5D
javascript:AL_get(this,%20'jour',%20'Biosci%20Rep.');
http://web.as.uky.edu/Biology/faculty/cooper/labWWW-PDFs/rlc-sohn.pdf


muscle fibers by causing an increase in permeability to chloride ions. In some crustacean 
muscles (mainly in limbs), the peripheral inhibitory neurons make synaptic contacts with 
motor neuron terminals as well as with the muscle fibers, and reduce the amount of 
transmitter released by the motor neuron (presynaptic inhibition) (Dudel and Kuffler, 
1961). This phenomenon is not present in the tonic flexor muscles of crayfish. 
 
Each abdominal ganglion (except the last) has three roots on each side. The first root 
contains axons of neurons innervating the pleopod musculature and sensory axons; the 
second root contains axons innervating phasic and tonic extensor musculature and 
sensory axons; and the third root, which leaves the nerve cord several millimeters caudal 
to the ganglion, contains axons innervating phasic and tonic flexor musculature. There 
are two branches of the third root. The deep branch (IIIa) innervates only phasic flexor 
muscles. The superficial branch of the third root (IIIb) in each half-segment contains six 
axons, which innervate the tonic flexor muscles. 
 
The neurons innervating the tonic flexor are spontaneously active, unlike the phasic 
efferent neurons, and in a good preparation, they will continue to fire for many hours after 
the abdomen has been removed from the animal. For a review of the historical nature of 
the discoveries made in these abdominal preparations see Atwood (2008). The cell 
bodies of four of the motor neurons and of the peripheral inhibitory neuron innervating the 
tonic flexor muscle in any half segment are located in the ganglion of that segment. The 
cell body of the remaining motor neuron is located  in the next caudal ganglion. These 
neurons may be reliably distinguished from each other on the basis of extracelluarly 
recorded spike amplitudes. If the tonic flexor muscle from one half segment is removed 
along with the two ganglia containing the neurons innervating this muscle, five neurons 
usually show some degree of spontaneous activity. These neurons are numbered on the 
basis of relative extracellular spike amplitude, in ascending order. f1 to f4 are 
motoneurons and f5, the largest spontaneously active neuron, is the peripheral flexor 
inhibitor. f6, the largest motor neuron, is an excitatory motor neuron which is seldom 
spontaneously active. 
  
The spontaneous nature of tonic motor neuron activity can be modulated by exogenous 
application of compounds or by providing a sensory stimulus to the cuticle within the same 
segment that is being monitored for motor nerve activity. 
 
 
Record the spontaneous activity of the EPSPs. Note the different sizes of the EPSPs and 
if IPSPs are present.  
 
NOTES ________________ 
 
Very carefully take a small paint bush and by hand stimulate along the cuticle edge within 
the same segment that one is monitoring the spontaneous activity. Note a change in 
frequency of the responses and if different size EPSPs appear that were not there prior 
to stimulating the cuticle. 
 



 
Preparation with stimulating brush and nerve roots. (modified from Strawn et al., 2000) 
 
 
 
NOTES ________________ 
 
 
 
The stimulation can be repeated after carefully exchanging the saline bath with one 
containing a neuromodulator such as serotonin (1 microM) or saline bubbled with CO2. 
Note the effect on the activity profile for a given stimulus. Also note if exchanging the 
saline back to fresh saline returns the activity to its initial condition. 
 
 
NOTES: effects of 5-HT ________________ 
 
 
 
Maybe we will also try GABA on the prep. 
 
 
NOTES: effects of GABA  ______________ 
 
 
 
 
The phenomena of the spontaneous activity of the 3rd motor root has been a topic since 
the 1960’s when Eckert (1961) examined if the tonic firing static muscle receptor organ 
(MRO) within the same or neighboring segment could account for the spontaneous motor 
drive. In these earlier studies it became apparent that the activity was driven within the 



ventral nerve cord (VNC) possibly from higher centers (Eckert, 1961; Kennedy and 
Takeda, 1965a,b; Strawn et al., 2000). Since the presence of CO2 stopped the 
spontaneous activity, one can assume somewhere in the drive to the motor neurons there 
might be gap junctions or even glutamatergic excitatory drive. The NMJs are blocked or 
present a decreased sensitivity to glutamate in the presence of CO2, so it is likely that 
they maybe blocked as well within the CNS (Bierbower, 2010; Bierbower and Cooper, 
2010; see also Badre et al., 2005).  
 
The action of various neuromodulators is also readily studied at the various types of NMJs 
(Cooper and Cooper, 2009; Griffis  et al., 2000; Southard et al.,  2000; Strawn et al., 2000) 
presented in addition to the influences on various aspects of the CNS circuitry. It has been 
suggested that the 5-HT and octopaminergic neurons may function as ‘gain-setters’ in 
altering the output of neuronal circuits (Ma et al., 1992; Schneider et al., 1996; Hörner et 
al., 1997; Edwards et al., 2002). Much work remains to be done before we can fully 
understand the effects of neuromodulators on individual target cells. Given that different 
neuromodulators may work in concert with one another, analysis of their mixed action is 
an area for future research (Djokaj et al., 2001). In addition, few studies, particularly in 
the vertebrates, address the effects of neuromodulators on entire pathways which can 
regulate a specific behavior. In this sensory-CNS-motor unit preparation one can examine 
the influence of both sensory input and neuromodulators  on the activity of the motor 
neurons (Kennedy et al., 1969). 
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